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ABSTRACT 
Deluge fire water systems can be subjected to large fluid-induced forces during rapid 
filling. There is therefore an interest to assess beforehand whether such a system can 
withstand these forces. The use of CFD methods for rapid filling simulations is often 
not practical due to the size of the systems involved. The method of characteristics 
(MoC), on the other hand, is much more efficient but is originally limited to single-
phase fluid flow. Although the literature describes several methods to extend the 
MoC to two-phase fluid flow, these methods tend to be applied to relatively simple 
piping systems. This paper therefore describes a method for extending the MoC to 
simulate rapid flooding of large piping systems with complex topologies. The method 
tracks the position of one or more gas volumes and calculates the back pressure of 
entrapped gas as it is released from the system. This paper will show that the 
presented method can simulate rapid flooding of large and complex systems in an 
efficient way. It will also show that the results obtained for simple piping 
configurations are in agreement with the literature, provided that the wave speed is 
adjusted to account for entrapped gas in the liquid phase. 
 
Notation 

𝐴 cross-sectional flow area of pipe
𝐴௜௡ projected inflow area

𝐴௢௨௧ projected outflow area 
𝑐 wave speed in liquid phase

𝑐ௗ vent discharge coefficient
𝐶ெ, 𝐵ெ positive MoC coefficients
𝐶ே, 𝐵ே negative MoC coefficients

d orifice diameter
𝒅 direction vector of linear momentum
𝐷 inner pipe diameter
𝑓 Darcy-Weisbach friction factor
𝑓௔ air fraction
𝑓௟ liquid fraction
𝑔 gravitational acceleration
𝐿௖ grid cell length

𝑁௜௡ number of inflow pipe elements connected to junction
𝑁௢௨௧ number of outflow pipe elements connected to junction

𝑝 pressure in liquid phase
𝑝଴ atmospheric gas pressure
𝑝௉ pressure in liquid phase in grid point P

𝑝஺, 𝑝஻ pressure in liquid phase in grid point A and B, respectively
𝑝௚ pressure in gas phase 
𝑄௜ rate of change of gas volume due to moving interfaces
𝑄௢ volumetric flow rate through vents 
𝒓 direction vector of pipe element

𝑡, 𝑡଴ time and time of previous time step



𝑢 flow velocity of liquid phase
𝑢ା, 𝑢ି interface velocity for positive and negative interface, respectively

V gas volume
𝛼 pipe’s angle of incline
𝛾 ratio of specific heats of the gas

Δ𝑡 time step size
Δ𝑉 change in gas volume
Δx grid cell length
𝜌 density of liquid phase
𝜌଴ atmospheric gas density
𝜙 mass flow rate of liquid phase

𝜙௜௡ absolute liquid mass flow rate that flows into a junction
𝜙௢ gas mass flow rate through vent
𝜙௉ mass flow rate of liquid phase in grid point P

𝜙஺, 𝜙஻ mass flow rate of liquid phase in grid point A and B, respectively
𝜙ା, 𝜙ି mass flow rate at positive and negative interface, respectively

 
 
1 INTRODUCTION 
 
Rapid filling occurs when a drained pipeline is suddenly flooded at a high enough 
flow rate that the liquid-gas interface is more or less perpendicular to the axis of the 
pipeline. The flooding liquid propagates at high velocities through the system. These 
high velocities result in significant unbalanced forces that can cause failures in the 
pipeline, such as pipe fractures or support breaks. The impact pressures due to rapid 
filling of a pipeline has been studied and several numerical models have been 
proposed to accurately predict the impact pressures; rigid-column models that 
assume the liquid-pipe system is incompressible (Lou et al. (1996)), elastic models 
that account for the elasticity of the liquid column (Malekpour et al. (2011); Zhou et 
al. (2011); Zhou et al. (2018)), and CFD models to resolve the multiphase flow in 3-
D (Li et al. (2018)). In elastic models often a small part of the liquid column near the 
air interface, the plug, is assumed to behave as a rigid-column, this subset of elastic 
models is referred to as virtual-plug models. The different rapid filling models 
predict the initial (highest) impact pressure well. 
The Method of Characteristics is a commonly used solution method to predict 
transients for engineering purposes in pipelines. However, the above-mentioned 
rapid filling models are either not suited for direct implementation in existing MoC 
routines, since they require significant changes to the data structures, or the models 
have significant performance overhead to obtain the accuracy required for academic 
purposes. Moreover, the mentioned papers describe situations of a single pipeline 
with an entrapped air volume that may or may not be expelled from an orifice. 
However, real pipeline systems tend to be much more complex with many branches 
to different outlets. For example, fire water systems often consist of a long pipeline 
from the pump/valve station and branches near the end to monitors, sprinklers, or 
other outlets. Each branch may eventually become a separate entrapped air volume. 
An efficient model is required to predict the rapid filling in reasonable computational 
time.  
This paper proposes a model that minimizes the impact on existing MoC code. The 
model is based on a virtual plug method, but trades off accuracy for performance and 
code simplification. The result is a model that only acts as a post processing step in 
the MoC code. The proposed model allows for multiple pockets of gas to be present 
in the pipeline at any given moment. Each pocket may have multiple interfaces with 



the liquid that floods the system. In order to optimize the volume tracking, pockets 
are defined as graphs, and the movement of interfaces expands or reduces the pockets 
graph. The graph topology is used to efficiently split pockets at junctions. 
In the proposed model, gas volumes grow and shrink according to the relations of an 
isentropic process, and can take in or expel gas to the environment via vents. The gas 
properties, including the pressure, are assumed to be homogeneous throughout the 
volume and, therefore, the wave speed in the gas phase to be infinite. The liquid-gas 
interfaces are implemented such that only information of the grid cells containing 
the interfaces is required.  
A cell containing a liquid-gas interface is considered to be fully filled for inertia and 
friction purposes. This is a more straightforward but less accurate approach than the 
one proposed by Zhou et al. (2018) and Malekpour et al. (2011). They model a small 
part of the liquid near the liquid-gas interface as rigid. This rigid part allows them to 
capture the increasing inertia and friction of the liquid column. However, their 
methods require the characteristic coefficients from the cells upstream of the cell that 
contains the interface and are defined by a more complex set of equations. The 
reduced accuracy is noticeable as small pressure surges, but does not significantly 
affect the overall results. 
 
 
2 METHOD OF CHARACTERISTICS 
 
The flow in the pipeline is assumed to be 1-D. The momentum and continuity 
equations can be written as 
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Here 𝑝 is the pressure, 𝜙 is the mass flow rate, 𝐴 is the flow area, 𝑓௟ is the liquid 
fraction, 𝜌 is the liquid density, 𝑔 is the gravitational acceleration, 𝛼 is the pipe’s 
angle of incline, 𝑓 is the Darcy-Weisbach friction factor, 𝐷 is the pipe’s bore, and 𝑐 
is the wave speed. The subscripts 𝑥 and 𝑡 are the partial and temporal derivatives, 
respectively. This system of equations can be solved using the method of 
characteristics (MoC).(6) In the MoC these partial differential equations are 
evaluated along the characteristic lines in the space-time domain. The pressure and 
flow rate are calculated at discrete locations in the space-time domain. Those 
locations will be referred to as the grid points and the space between two grid points 
will be referred to as grid cells. 
The derivation of the solution will be omitted as it is described in many text books 
about differential equations or numerical pipe flow. The pressure and the flow rate 
at a grid point 𝑃 along the positive characteristic follow the relation 
 

𝑝௉ ൌ 𝐶ெ െ 𝐵ெ𝜙௉ 3 
 
Here 𝑝௉ and 𝜙௉ are the pressure and mass flow rate in grid point P, and 𝐶ெ and 𝐵ெare 
the positive MoC coefficients. The pressure and the flow rate at a grid point 𝑃 along 
the negative characteristic follow the relation 
 

𝑝௉ ൌ 𝐶ே െ 𝐵ே𝜙௉ 4 



 
Here 𝐶ே and 𝐵ே are MoC coefficients for the negative characteristic. The MoC 
coefficients 𝐶ெ, 𝐶ே, 𝐵ெ, and 𝐵ே are given by 
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Here Δ𝑥 is the grid cell length, and the subscripts 𝐴 and 𝐵 denote the value of the 
previous time step for the upstream point and downstream point, respectively. 
Equations 3 and 4 are required to calculate the propagation velocity of a liquid-gas 
interface. 
The wave speed depends on pipe materials and geometry. Therefore, the MoC 
requires the piping system to be discretized into pipe elements. A pipe element is a 
section of piping between two junctions that have the same wave speed. 
 
 
3 NUMERICAL MODEL 
 
The rapid filling model proposed here is based on the following: (1) flooding 
happens sufficiently fast such that the liquid-gas interfaces can be assumed to 
perfectly cover the cross-sectional area of a pipe; (2) the compression and 
expansion of the gas are isentropic processes; (3) transient effects within the gas 
volume are negligible; (4) fittings, like valves, have no effect on the state of the gas 
phase; (5) the gas-liquid interfaces propagate significantly slower that the speed of 
sound; (6) gas is not entrained in the liquid phase; (7) all air inlet/outlets operate at 
the same atmospheric pressure and temperature; and (8) a quasi-steady wall friction 
factor is sufficiently accurate. Note that the fourth assumption implies that the 
pressure and temperature within a gas volume is homogeneous and the speed of the 
sound infinite. The sixth assumption implies that the wave speed of the liquid does 
not change in time. 
 
The geometry and size of a gas changes due to the movement of its interfaces with 
the liquid and due to expulsion (or in take) of gas through vents. The volume of a 
pocket can be determined by 
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Here 𝑉 is the size of the pocket, 𝑡 is the current time and 𝑡଴ is a time in the past, 
and 𝑄௜ is the rate of change due to moving liquid-gas interfaces. It is assumed that 
the size of a gas volume is governed by the following isentropic relation 
 

𝑝௚𝑉ఊ ൌ constant 10 
 
Here 𝑝௚ is the gas pressure, and 𝛾 is the ratio of specific heats. Using the isentropic 
relation, the volume change due to vents is given by 
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Here Δ𝑉଴ is the expelled volume at 𝑝௚ሺ𝑡଴ሻ, and 𝑄௢ is the volumetric flow through 
vents. According to the isentropic relation of equation 10, the equations 9 and 11 
relate as   
 

𝑝௚ሺ𝑡ሻ𝑉ሺ𝑡ሻఊ ൌ 𝑝௚ሺ𝑡଴ሻሺ𝑉ሺ𝑡଴ሻ െ Δ𝑉଴ሺ𝑡ሻሻఊ 12 
 
Here the left-hand side is the state at time 𝑡 and the right-hand side is the state at 
time 𝑡଴. The model assumes that an interface is perpendicular to the pipeline axis, 
so that an interface always lies within a single grid cell. 
The flow in the liquid phase and the movement of the liquid-gas interfaces is 
determined by means of the MoC. As a consequence, the model distinguishes 
between positive and negative interfaces. A positive interface has the liquid 
upstream and the gas downstream; its movement is determined by the positive MoC 
characteristic of the cell, equation 3, with the pocket’s pressure as pressure. A 
negative interface has the liquid downstream and the gas upstream; its movement is 
determined by the negative MoC characteristic which is described in equation 4. 
This means that the movement of an interface depends on the inertia and friction 
associated with an entire grid cell, even though it is partially filled with liquid. This 
will cause small pressure perturbations when an interface moves between grid cells. 
However, it is expected that these perturbations do not significantly affect the 
overall transient flow conditions within the pipeline system. 
Using the pocket’s pressure as pressure in equations 3 and 4 shows that the mass 
flow rate at the interface is given by 
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Here 𝜙ା and 𝜙ି are the mass flow rates at the positive and negative interfaces, 
respectively. As the interfaces move with the same velocity as the liquid, the 
velocity of an interface is given by 
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Under adiabatic conditions, the gas mass flow rate through vents to the atmosphere 
can be expressed by(10) 
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Here 𝑝଴ is the atmospheric pressure, 𝜌଴ is the gas density at atmospheric pressure, 
and 𝑐ௗ is the discharge coefficient of the vent. Note that 𝑐ௗ has been added to account 
for possible pressure losses. If 𝑝௚ 𝑝଴⁄  is greater than a critical ratio, then the flow 
through the vent is choked and the mass flow rate is calculated as 
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The critical pressure ratio is given by 
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Using 𝛾 ൌ 1.4 in equations 10 to 12 results in the same equations for air-inlet valves 
described by Wylie et al. (1993). The equations 12 to 17 form the governing 
equations of the proposed model. The relation for the volume change can be derived 
by discretizing these equations and assuming 𝑝௚, 𝑄௜, and 𝑄௢ to be constant in each 
discretized step. The change in volume between to time steps is given by 
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Here Δ𝑉 is the change in volume and Δ𝑡 is the time step size. In this equation, the 
first two summations represent the volume change due to moving interfaces, the third 
summation represents the volume change due to flow though vents. The right-hand 
side represents the volume change due to changes in pressure. Each term depends on 
the pressure of the next time step, which is the only unknown. The equation is solved 
for the pressure using an adaptation of the Anderson-Björck algorithm, which is a 
member of the Regula Falsi family. The two summations for the moving interface 
can be written in terms of MoC coefficients as follows 
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Note that this is similar to the way that the MoC equations are solved at junctions. 
Also note that 𝐶௜ is the positive or negative characteristic and depends on the 
topology of the pocket. Since the vents are assumed to be connected to the same 
atmosphere and the volume is assumed to be homogeneous, the summation over the 
vent flow rates can be simplified to a vent with a 𝑐ௗ𝐴 of 
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These simplified summations are independent on the pressure and are constants in 
the iterative solution method. 
 
 
4 VOLUME TRACKING  
 
The behavior in a pipe element is well defined; an interface can either move upwards 
or downwards along the pipe axis. However, at junctions an interface has to cross to 
different pipe elements. This may lead to splitting the air pocket into multiple smaller 
pockets. In heavily branched piping systems, this will occur often. Therefore, an 



efficient algorithm is required to detect and split air pockets into multiple smaller 
pockets. 
A positive interface should, per definition, always match with a downstream negative 
interface unless downstream the pipe element is fully drained in which case the 
interface matches with the downstream junction. Similarly, a negative interface 
should always match with an upstream positive interface or an upstream junction. 
The drained part of a pipe element will be referred to as a segment. Segments may 
connect to one other via “drained” junction that are part of a pocket. An air pocket 
can be described by a set of segments such that their interfaces enclose the volume 
of the pocket. 
If a pocket splits, then its original set of segments no longer fully connects. These 
situations can be identified by the following routine; pick a segment from the original 
pocket and add it to a list; if segment is connected to one or two junctions, then add 
each adjacent segment to this list (no duplicates); repeat the previous step for each 
newly added segment until no new segments are added to the list. If the list is not 
equal to the original set, then the pocket is split; a new pocket is created from the list 
of segments and the list removed from the original set. This is repeated until the list 
is equal to the original set. 
 
 
5 INTERFACE-JUNCTION INTERACTION 
 
Each time step an interface moves along the flow grid according to Equation 14. 
During its movement, three situations may occur; it may remain within the same grid 
cell; it may cross into an adjacent grid cell; and it may cross a junction. 
If an interface remains within the same grid cell, then only the upstream (or 
downstream) grid point is affected as if it is subjected to a fixed pressure boundary.  
If an interface moves into an adjacent grid cell of the same pipe element, then the 
flow rate of the moved-to cell is set equal to flow rate at the interface. This minimizes 
any inertia-based disturbances in the flow field. The liquid column’s inertia will 
change in steps equal to the inertia of a grid cell. Therefore, the liquid column 
accelerates slower than other elastic models, like those of Malekpour et al. (2011) 
and Zhou et al. (2011, 2018). The sudden inclusion of the friction of the moved-to 
cell is not compensated for and will therefore lead to small pressure surges each time 
a cell boundary is crossed. The amplitude of this pressure surge is given by 
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Here 𝐿௖ is the grid cell’s length, and 𝑢 is the flow velocity in the grid cell. Compared 
to impact pressures and in the scope of a large pipe system this pressure is expected 
to become negligible. Note that the surge magnitude is proportional to the cell length. 
Hence, as the grid becomes denser the pressure surges vanish. 
If an interface moves past a junction, then situation becomes more complex as 
multiple interfaces may cross the same junction in the same time step. There are two 
different scenarios; liquid flows into a junction that is part of an air pocket (a 
“drained junction”); and gas flows into a “non-drained junction” that becomes part 
of an air pocket. These two scenarios have been illustrated in Figure 1. 
 



 
Figure 1: Illustration of two different flow scenarios at a junction. (Left) liquid 

flows into a junction that is part of a pocket. This causes the liquid-gas 
interface to split into two as indicated with the dashed-lines. (Right) gas flows 
from the dashed line into a junction and causes the liquid-gas interface to split 

into two.   
 
A junction tracks how much swept volume of liquid or gas flows into the junction 
through the moving interfaces. After updating each interface, each junction has a 
complete balance of the amount of swept volume of either liquid or gas.  
If liquid flows into a drained junction, then this junction is no longer drained. The 
junction is removed from the pocket’s topology and the interface is moved past the 
junction onto each connected pipe element that is being filled. This effect may split 
interfaces into multiple interfaces and, consequently, split air pockets into multiple 
smaller air pockets. Figure 1 (Left) shows an example of an interface that splits into 
two interfaces. Liquid that flowed into the junction has linear momentum and, 
therefore, will prefer to keep moving in the same direction. The new interfaces are 
assigned velocities that include this effect. That is, the initial flow rates out of the 
junction are determined in such a way that the liquid momentum change is 
minimized. The initial flow rate depends on the projected inflow and outflow area 
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Here 𝐴௜௡ and 𝐴௢௨௧ are the projected in and outflow areas, respectively, 𝒅 is the 
direction vector of the linear momentum, 𝒓௜ and 𝐴௜ are the direction vector and area 
of pipe element 𝑖, and 𝑁௜௡ and 𝑁௢௨௧ are the number pipe elements with flow into and 
out of the junction, respectively. If the outflow area is larger than the inflow area, 
then the linear momentum is assumed to pass undisturbed through the junction and 
the liquid mass flow rate associated with an interface is given by 
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Here 𝜙௜௡ is the absolute mass flow rate that flows into the junction. If the outflow 
area is less than the inflow area, then the flow is assumed to be restricted and part of 
the flow will be distributed over all the interfaces. In this case, the flow rate 
associated with an interface is given by 
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If gas flows into a non-drained junction, then gas begins to flow through the junction. 
The junction is added to the pocket’s topology and a segment is created in each 
connected pipe element that is being drained. The initial volume of each segment is 
determined by the flow rate in each pipe element. 
 
The proposed model does not support two-phase flow such as stratified flow. 
However, two-phase flow scenarios are possible to occur in practical use of the 
model. For example, two-phase flow is likely to occur when an air valve starts to 
take in air. Therefore, the model accounts for two-phase flow situations in a limited 
way so that the computed results remain realistic in may flow scenarios. A two-phase 
flow scenario occurs when both gas and liquid flows into a junction. If an air valve 
is connected to the junction, then only the difference inflow between the upstream 
and downstream is used to move the downstream interface while the upstream 
interface remains stationary. In other two-phase flow scenarios, gas is assumed to be 
dissolved into the liquid phase and, therefore, no longer tracked. 
 
The proposed model has been added to an existing MoC flow solver that uses a quasi-
steady wall friction model; the Darcy-Weisbach friction factor is updated each time 
step based on the average instantaneous flow rate in a pipe element. Note that the 
solver core did not require any significant changes as the flooding model is executed 
as an additional post-processing step after each regular MoC update. 
 
 
6 MODEL ASSESSMENT 
 
Performance, besides accuracy, was an important requirement for the flooding 
model. Its performance has therefore been assessed for various piping models, two 
of which are discussed here. The first piping model is equal to the one described by 
Hou et al. (2014). This model consists of a 275.2 m PVC pipeline which is rapidly 
filled. For this model the flooding model increases the runtime of the MoC solver 
(about 6 seconds) by 22% on average. 
The second piping system is a cooling water system for a jet fuel tank. The pipeline 
branches into 20 arms around the tank wall and roof and a total of 336 sprinklers are 
attached to these arms. The total pipe length of this system is 907 meters. This system 
represents a common use case for the proposed model. The system is simulated for 
20 seconds with a time step of 3.5e-4 s. After 20 seconds the system is fully flooded. 
For this model, the flooding model increases the runtime of the MoC solver (about 
140 seconds) by 34%. This is more than the first piping model, because it involves 
many more gas pockets that move through the piping system. Although an increase 
of 34% in the execution time is significant, it can be deemed fairly modest when 
compared to alternative two-phase flow solutions. 
The accuracy of the proposed model has been assessed by comparing its results with 
those published by Zhou (2002, 2011, 2018) and Hou (2014). 
 
Zhou et al. (2011) investigated the influence of entrapped air pockets on hydraulic 
transients. Their experimental setup consists of a 4.445-meter pipe that has an 
entrapped air pocket at atmospheric pressure on one end and a tank on the other. The 
rapid opening of a ball valve causes a sudden liquid flow together with the expulsion 
of the entrapped air. They compared their proposed elastic model with experimental 



results. Their experiment has been modelled with our proposed model. Here we 
assume the same properties as they used in their model. Their results and the results 
of our proposed model are depicted in Figure 2. Our model follows theirs closely for 
air fractions 𝑓௔ of less than 1%. For air fractions between 1% and 6% our model, like 
the one from Zhou, predicts a pressure that is higher than the measurements. For 
larger air fractions our model is in more agreement with the experiments. The last 
section piping in the experimental setup is horizontal. For small air fractions, the 
assumption that the interface is perpendicular to the pipe axis is invalid as the liquid-
air interface is parallel to the pipe axis. This may explain the difference in pressure 
surge at small air fractions.  
 

 
Figure 2: Maximum relative absolute pressure as function of initial air 

fraction for (diamond) measurements of Zhou et al. (2011), (square) virtual-
plug model by Zhou et al. (2011), and (circle) our proposed model. Here 

𝑯𝒎𝒂𝒙is the absolute maximum pressure and 𝑯𝒓 is the absolute initial pressure 
supplied by the tank. In this case 𝑯𝒓 is 0.16 MPa (abs.). 

 
Zhou et al. (2018) did an extensive experimental study on the effect of air expulsion 
though an orifice. Their experimental setup consists of a pressure vessel connected 
to an 8.862-meter horizontal pipe that end in a bend upwards. In their study an air 
pocket in the vertical pipe is expelled from an orifice at the top of the vertical pipe. 
They present results for three pressures, seven initial air volumes, and 20 orifice 
sizes. The measured wave speed in the pipeline without air is 850 m/s. 
 
Their experimental setup has been simulated with our proposed model. The pressure 
vessel has been represented with a fixed pressure boundary condition. The relation 
between the maximum pressure and relative orifice size is shown in Figure 3. Zhou 
et al. (2018) identified two types of behaviours. Type 1 identifies a long-period of 
pressure oscillations and no significant water hammer impact pressure. Type 2 are 
associated with short oscillations and a higher water hammer impact pressure. The 
two types are also visible with the proposed model. The cushioning effect of the air 
pocket reduces the maximum pressure up to a d/D of 0.05. The cushioning effect 
diminishes for large d/D and the maximum pressure is dominated by the impacting 
water hammer. The proposed model shows that the maximum pressure increases with 
increasing air length, see Figure 4. The proposed model follows the same trend as 



the experimental results up to an air pocket length of 3.39%. Beyond that length the 
results to deviate, however. The experiments show a decrease in maximum pressure 
after an air pocket length of 3.39%. Zhou et al. (2018) concluded that when the initial 
air pocket is larger than a critical length (3.39% in their experiments), then the filling 
velocity is slowed and, consequentially, the maximum pressure is reduced. The 
proposed model does not result in the same trend; the maximum observed pressure 
keeps increasing. The reason for this deviation is not known. 

 

 
Figure 3: Relation between maximum absolute pressure and relative orifice 

size 𝒅 𝑫⁄  for different air fractions 𝒇𝒂. Here 𝑷𝒓 is 0.26 MPa (abs.). 
 

 
Figure 4: Maximum pressure as function of initial air pocket size for (solid) 

proposed model and (square) Zhou et al. (2018) experimental results. Here 𝑷𝒓 
is 0.26 MPa (abs.). 

 
Zhou et al. (2002) did experiments with a horizontal configuration of a pipe with 
entrapped air and an orifice for air release. In their paper they derived a rigid body 
model. Their model is in good agreement with their experimental results. They 



measured the wave speed during their experiments and used those wave speeds in 
their model. Zhou et al. (2002) specifies that the wave speed is in the range of 200 
m/s to 1400 m/s. For our experiments, a wave speed of 400 m/s, 1000 m/s, and 1400 
m/s are used for 4.8%, 50%, and 80% initial liquid fractions, respectively. This 
resulted in more or less the same maximum pressures. 
 
Figure 5 show the results of proposed model on the experimental setup from Zhou et 
al. (2002) with an upstream pressure of 343 kPa. For an initial liquid fraction of 80%, 
our model predicts local minima and maxima in the transition regime (0.05 ൏ 𝑑 𝐷⁄ ൏
0.2ሻ. These minima and maxima are a result of the timing of fully expulsion of air 
from the pipe. The pressure of the entrapped air increases during the rapid filling, 
slowing down the liquid column. For small orifice diameters, the inertia of the liquid 
column causes the velocity to oscillate; see Figure 5. Consequently, the exact 
moment when all air has been expelled determines the velocity of impact, and 
therefore the maximum pressure. As a consequence, the maximum pressure oscillates 
as the orifice diameter increases. 
This oscillation is less significant for the other liquid fractions as it is dampened by 
friction. Since the liquid column travels a longer distance, the oscillation will be 
dampened more. This oscillation is not present in the experimental and numerical 
results of Zhou et al. (2002). 
 

 
Figure 5: Maximum relative absolute pressure as function of relative orifice 

size for (lines) proposed model and (markers) experimental results Zhou et al. 
(2002). The upstream pressure 𝑷𝒓 is 0.44 MPa (abs.). 

 
 



 
Figure 6: Front velocity as function of time for three different relative orifice 

sizes at a relative liquid fraction of 80%. The liquid column reaches the orifice 
at different velocities depending on the phase in the oscillation. 

 

 
Figure 7: Front velocity as function of time for the experimental setup of Hou 
et al. (2014). The results of Hou et al. (2014) are denoted with a solid line and 

the proposed model with a dashed line. 
 
Hou et al. (2014) investigated rapid filling of a larger pipeline system. Their 
experimental pipeline consists of a 275.2-meter-long PVC pipe and some steel 
piping. The PVC pipe was initially empty and filled rapidly. However, they noted 
that there is entrapped air in some of the steel piping. In our model this volume is 
estimated to be 0.53 𝑚ଷ and is modelled as a surge vessel as described by Wylie et 
al. (1993). In our model the friction is set to match the steady state results obtained 
by Hou et al. (2014). The comparison between the measured front velocity and the 
proposed model is shown in Figure 7. The proposed model is consistent with the 
front velocity measurements. It should be noted that entrapped air pocket of 0.53 𝑚ଷ 



causes the maximum velocity and the oscillation in the first 10 seconds. Without this 
extra volume the maximum velocity is lower and is the initial curve less steep. 
 
 
7 CONCLUSIONS 
 
The numerical model for modelling rapid filling of pipelines presented here 
simplifies the elastic models for rapid filling as proposed by Malekpour et al. (2011) 
and Zhou et al. (2018) to trade off accuracy for performance and implementation 
simplicity. In the proposed model, special attention is given to volume tracking and 
the interaction between junctions and air pockets. The results show that the proposed 
model increases the execution time of an efficient MoC solver with 34% when it is 
used to simulate the filling of a heavily branched piping system. 
The proposed model compares reasonably well with experiments and numerical 
results found in literature despite of the reduction in accuracy of the proposed model. 
These experiments include situations of small and large air pockets. Therefore, it is 
reasonable to assume if the proposed model can predict these situations, then the 
proposed model can predict the impact pressure surges in larger and more complex 
piping systems during rapid filling.  
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