
 

 

Three practical ways to speed up the method of 
characteristics 
 
Dr. Ir. F.J. Lingen 
Dynaflow Research Group 
 

 

ABSTRACT 

Although the Method of Characteristics (MoC) has proven to be robust and accurate, it 

may involve long execution times when the ratio between the spatial and temporal 

resolution is at odds with the geometry of the piping system. This paper therefore describes 

three methods that are aimed at reducing the execution time of the MoC. The first two seek 

to obtain a coarse and accurate space-time grid, while the third is aimed at running the 

MoC on multiple processor cores. This paper shows that these three methods can reduce 

the execution time of the MoC by two orders of magnitude. 

 

 

1 INTRODUCTION 

 

The Method of Characteristics (MoC) has been widely used for multiple decades to 

simulate transient flow conditions in piping systems and networks. It is accurate, robust 

and straightforward to implement because its mathematical formulation embodies the way 

that pressure waves propagate through space and time (9,11,2). This, however, also 

imposes restrictions on the space-time grid that determines at which locations the flow rate 

and pressure need to be calculated. In particular, the MoC may require a large number of 

grid points when the piping system involves both short and long pipeline sections, or when 

the system involves dynamic boundary conditions and equipment — such as check valves 

— that change the flow conditions on short time scales. As a consequence, the execution 

time of the MoC may be in the order of tens of minutes to hours. While this is not 

spectacular when compared to the execution times of, say, typical CFD computations, it is 

certainly less than ideal, especially when multiple transient simulations are required to 

explore and understand the relevant problem space. 

 

This paper therefore presents three methods for reducing the execution time of the MoC. 

The first method is actually a collection of methods and heuristics that are aimed at 

obtaining an optimised base space-time grid that comprises a near minimum number of 

grid points, and that still leads to sufficiently accurate results. The second method 

selectively coarsens the base grid to reduce the number of grid points in long pipeline 

sections. This method leads to a non-uniform grid spacing in time, but in such a way that 

its implementation is far from complicated. The third method is aimed at using the 

combined processing power of multiple processor cores to reduce the execution time of 

the MoC. The three methods can be applied independently from each other and their 

implementation does not require radical changes to the structure of typical computer 

programs implementing the MoC. 

 

The effectiveness of the three methods is examined for three realistic piping systems with 

different traits. Not only the execution time of the MoC is an important aspect, but also the 

accuracy of the results. Indeed, a spectacular reduction in execution time is not worth much 

if the results are not accurate enough. 

 



 

 

The methods presented in this paper are, to a large extend, variations, combinations and 

extensions of a multitude of methods and ideas that have been presented in earlier research. 

However, they do incorporate some twists that make them unique and that help to make 

the MoC more efficient. 

 

 

2 ESSENTIALS OF THE MOC 

 

The core idea underpinning the MoC is to evaluate the partial differential equations of 

mass and momentum conservation along the characteristic lines in the space-time domain. 

This yields a set of ordinary differential equations that can be transformed into a series of 

algebraic equations that, in turn, yield the pressure and flow rate at discrete locations in the 

space-time domain. Those locations will be referred to as the grid points that make up the 

space-time grid. 

 

As the MoC has been described extensively in literature, not all the details will be repeated 

here. Instead, this paper focuses on the way that the MoC updates the pressure and flow 

rate in each grid point as it marches through time. The procedure is summarised in Figure 

1 (left): the pressure and flow rate in point P is obtained from the pressures and flow rates 

in points U and D that are located at a previous time level. Both points are also located at 

the starting points of the characteristic lines C+ and C- that end at point P. The characteristic 

lines are described by the following equations: 

x = xp ± a(t  −  tp) 

where a is the effective wave speed, and (xp,tp) denote the space-time coordinates of point 

P. 

 

 

Figure 1: illustration of the way in which the MoC updates the pressure and flow 

rate in the point P by using the pressures and flow rates in the points U and D. The 

left figure shows a symmetric update while the right figure shows a skewed update. 

 

The points U and D do not necessarily have to be located at the same time level, as long as 

they are the starting points of the positive and negative characteristic lines, respectively, 

that end at point P; see Figure 1 (right). This observation forms the basis of different 

interpolation schemes (3) that need to be applied when adjacent grid points are not joined 

by characteristic lines. 

 

It is attractive to use a rectangular space-time grid that conforms to the characteristic lines. 

That is, a grid in which the ratio between the spatial and temporal distance between 

adjacent grid points equals the (local) wave speed of the fluid. Such a conforming grid not 



only simplifies the implementation of the MoC, but also avoids adverse numerical effects, 

such as dispersion and damping (10), that typically arise when interpolation is needed to 

update grid points that are not joined by characteristic lines. On the other hand, the fixed 

ratio between the spatial and temporal resolution can be at odds with the geometry of the 

piping system to be modelled, especially when the system includes both short and long 

pipeline sections. In such a case the smallest pipeline sections will dictate the spatial 

resolution and therefore the temporal resolution. The methods described in the next two 

sections are aimed at addressing this particular problem without giving up all the 

advantageous properties of a rectangular, conforming grid. 

 

Note that the above, and also the remainder of this paper, assumes that the effective wave 

speed at any point in space does not change (significantly) over time. This assumption is 

normally true when considering single-phase, incompressible fluids. 

 

 

3 GRID AND MODEL OPTIMISATION 

 

While the use of a rectangular, conforming space-time grid clearly has its advantages, 

generating such a grid is not trivial when the total number of grid points is to remain 

manageable. To illustrate this, consider the (contrived) piping system shown in Figure 2. 

Assuming a uniform wave speed, this seemingly trivial system requires at least 11,607 + 

18,469 + 41,393 = 71,469 grid points in the spatial dimension in order to correctly represent 

the lengths of all three pipeline sections. It is not hard to imagine that the required number 

of grid points becomes way too large for a piping system of any complexity and with a 

non-uniform wave speed. Clearly, some concessions need to be made if the number of grid 

points is to remain manageable. One possibility is to abandon the idea of using a 

conforming grid and apply an interpolation scheme (10) to match the grid with the pipeline 

sections. Another possibility, and the one that is pursued here, is to allow the effective 

pipeline lengths and wave speed, as defined by the space-time grid, to deviate from the 

true pipeline lengths and wave speed. This is not an unreason able approach as the pipeline 

lengths and the wave speed are not known with an infinite precision (11). 

 

 

Figure 2: example piping system consisting of three pipeline sections. The indicated 

lengths of the sections are relative to each other. 

 

In addition to the geometry of the piping system and the wave speed, there are other factors 

that affect the resolution of the space-time grid. These include: time-dependent boundary 

conditions; models of highly dynamic equipment, such as safety relief valves, that are 

solved together with the flow equations; and the stability criterion that is related to the way 

that the pipe-wall friction is incorporated into the MoC (11). The latter depends on the flow 

rate that is not known beforehand. However, one can make an educated guess based on the 

fluid type and typical flow velocities. 

 

Here follows a basic algorithm for generating a rectangular, conforming space-time grid: 



 

 

1. Determine a maximum time step size for each pipeline section. This depends on 

the particular implementation of the MoC and the minimum number of spatial 

grid points per section; this typically equals two or three. The maximum time 

step also depends on the other factors mentioned above. 

2. Set the initial time step size equal to the smallest maximum time step size 

associated with each pipeline section. 

3. Check whether an acceptable grid can be obtained by varying the lengths and 

wave speed between specified limits. 

4. If this is the case, then the algorithm terminates. Otherwise, the time step size is 

decreased and the algorithm continues with the previous step. 

 

The faster the time step size is decreased, the faster the algorithm will terminate. On the 

other hand, the slower the time step size is decreased, the less points the final space-time 

grid will contain, and the less time a transient simulation will take. 

 

The basic algorithm can be improved in various ways. One way is to decrease the time step 

size in a more intelligent way by keeping track of an upper and lower bound on the time 

step size for each pipeline section, and by trying to nudge the time step to a value that lies 

between the lowest upper bound and the largest lower bound. Another way is to keep 

raising the time step size once an acceptable time step size has been found. This is only 

useful if the rate with which the step size is increased is lower than the rate with which it 

is decreased. This approach makes it possible to set a fast, decreasing rate to start with, and 

still end with a time step size that is near its optimum. It can be improved further by 

applying some random perturbations to the time step size in order to escape from a local 

optimum. 

 

Consider, again, the piping system shown in Figure 2 and assume that section P1 has an 

actual length of 100m, and that the wave speed equals 1000m/s. Further assume that the 

effective pipeline lengths and wave speed, as represented by the space-time grid, must not 

deviate more than 0.1% and 5%, respectively, from the actual lengths and wave speed. 

Then, when using the basic grid generation algorithm together with the above 

improvements, and when ignoring any restrictions on the time step size, the resulting grid 

contains only 22 points in the spatial dimension. This is a dramatic improvement when 

compared to the original 71,469 grid points. 

 

Model optimisation 

The grid generation algorithm can still yield a dense space-time grid when the piping 

system involves one or more sections that are very small in comparison with the overall 

system length. There are several solutions to this problem, three of which are considered 

here. This first solution is to view (very) small sections as “lumped” elements (11) that are 

handled in a similar way as orifices and valves. That is, the wave speed in such a small 

section is considered to be infinite and the pressure drop over the section is considered to 

be proportional to the square of the flow velocity. The length of a lumped section can be 

added to an adjacent pipeline section in order to preserve the total length of the system. 

 

A slight variation of this solution is to impose a lower limit on the length of each pipeline 

section. If a section is smaller than this limit, then the section is essentially stretched. 

Again, the lengths of adjacent sections can be adjusted to preserve the total length of the 

system. Although this approach is a bit blunt, it can be effective when small sections have 



been included solely in order to obtain an accurate model of a piping system and when 

those sections have a negligible impact on the calculated flow rate and pressure. 

 

A third, and effective solution involves aggregating adjacent pipeline sections with 

matching properties – such as inner diameter and pipe-wall stiffness – into larger sections 

so that small sections are effectively removed from the piping model. This approach makes 

the implementation of the MoC more complex as the end points of the original pipeline 

sections do not necessarily coincide with the grid points in the optimised model. This 

means that additional data structures are required to determine how the pipeline sections 

in the original model are related to the sections in the optimised model. This also means 

that interpolation is required to determine the flow rate and pressure at the end points of 

the original pipeline sections. The gain, on the other hand, can be a significant reduction 

in the number of grid points, especially when the optimised model is made up of 

significantly longer pipeline sections than the original model. 

 

Accuracy assessment 

Any change to the space-time grid affects the numerical accuracy of the computed flow 

rate and pressure. A coarser grid will, in general, lead to less accurate results. Conversely, 

an increasingly finer grid will lead to more and more accurate results. This, then, suggests 

a pragmatic way to determine the accuracy of the results: first run a transient flow 

simulation with a coarse space-time grid; then reduce the time step size and run a second 

simulation with a finer grid. If the results obtained with the two runs are sufficiently close, 

then it seems reasonable to assume that the results are accurate. Otherwise, the initial grid 

is too coarse and the finer grid should be used as the starting point for another iteration of 

this procedure. 

 

While this is not a rigorous approach, it can spot situations in which the initial grid is too 

coarse to obtain sufficiently accurate results. The second run does increase the total 

execution time significantly, but this increase may be offset by the gain that is obtained 

with a more efficient space-time grid. This is especially the case when applying the grid 

coarsening method described in the next section. 

 

Complexity tends to lurk in the details, and in this case one of those details concerns the 

comparison between the results obtained with two different space-time grids. If the 

comparison is too strict, then the final space-time grid might be too fine for the level of 

accuracy that is deemed to be sufficient. The approach that has been adopted here removes 

the temporal dimension by comparing the maximum and minimum flow rate, pressure and 

unbalanced (fluid-induced) force that is obtained per pipeline section over the entire 

simulation time. This not only simplifies the comparison, but also bases the comparison 

on the quantities that tend to be the most relevant in transient analyses. To make the method 

more robust, the maximum and minimum values are compared for overlapping clusters of 

adjacent pipeline sections. Thus, if a maximum or minimum occurs very near an end point 

of a section, then a slight shift of that maximum or minimum to the adjacent section will 

not cause the comparison to yield a negative result. 

 

 

4 GRID COARSENING 

 

The number of grid points in a rectangular space-time grid will, in general, be determined 

by the smallest pipeline section in the piping system, even when applying the optimisation 

methods presented in the preceding section. The grid coarsening method presented here 

therefore gives up the idea of using the same time step size for all pipeline sections while 



 

 

aiming to preserve the advantages of a rectangular, conforming grid in which the ratio 

between the temporal and spatial resolution equals the wave speed. The method is based 

on earlier work (7,8,3) and adds a little twist that simplifies its implementation. 

 

The grid coarsening method starts with a rectangular, conforming grid with a fixed time 

step size that is referred to as the base time step size. Then, for each pipeline section, it 

repeatedly doubles both the time step size and the spatial distance between the grid points 

until the time step size exceeds the maximum time step size associated with the section, or 

until the effective, grid-spanned length of the section deviates too much from its actual 

length. In this way the time step size associated with each section is equal to the base time 

step size times a power of two. The ratio between the section-specific time step size and 

the base time step size is called the section grid level. Note that sections with a time step 

size equal to the base step size have a grid level equal to one. Figure 3 shows an example 

of the resulting grid for three pipeline sections that have grid levels one, four and two, 

respectively. The symbol ∆t1 denotes the base time step size. 

 

 

Figure 3: example of a space-time grid obtained after coarsening the base grid with 

base time step size ∆t1. The pipeline sections P1, P2 and P3 have grid levels equal to 

one, four and two, respectively. 

 

After generating a non-uniform grid in this way, the MoC proceeds more or less in the 

usual way by marching through time with the base time step size. However, the pressure 

and flow rate are only calculated for the grid points within a pipeline section when its grid 

level is a multiple of the current time step number. If that is not the case, then the section 

is simply skipped; it is deemed to be inactive during the current time step. 

 

The application of grid coarsening does not require different data structures than those that 

are required when using a rectangular grid. In particular, it is sufficient to store the flow 

rate and pressure for two successive time steps, just like when using a rectangular grid. 

The only difference is that those time steps will correspond with different base time steps 

for different pipeline sections, depending on the grid levels associated with those sections. 

 

Interpolation between grid levels 

Interpolation is required when two or more adjacent pipeline sections have different grid 

levels. This is not very complicated, however, because the time step sizes associated with 

those sections are always an exact multiple of the base time step and of each other. In 

particular, there is no need for an extrapolation step (7); a simple time-line or space-line 

interpolation scheme (3) is sufficient. The current implementation uses a first-order space-



line interpolation scheme as that proved more convenient to embed into an existing MoC 

implementation. 

 

Figure 4 shows how the pressure and flow rate are updated at the boundaries of three 

pipeline sections and for four consecutive time steps. The time steps are marked with 

different colours and symbols. The slanted arrows in the figure indicate the characteristic 

lines that end at the grid points. As not all starting points of the characteristic lines 

correspond with a grid point, the flow rate and pressure are linearly interpolated between 

the grid points A1 and B1 to obtain the flow rate and pressure at the points A2, A3 and A4. 

Likewise, the flow rate and pressure need to be interpolated between the points B1 and C1 

to update point C3. This is similar to the skewed update shown in Figure 1 (right). Note 

that because the effective section-local time step sizes are always an integer multiple of 

each other, the interpolation coefficients are trivial to determine and do not need to be 

stored explicitly. 

 

 

Figure 4: schematic representation of the method for interpolating results between 

grid levels. The colours and symbols correspond with different time steps, and the 

slanted arrows indicate the characteristic lines along which the flow rate and 

pressure are updated. 

 

Impact on execution time and accuracy 

When grid coarsening is applied, the grid resolution is no longer dictated by small pipeline 

sections. Indeed, the grid resolution is much more determined by stability and accuracy 

requirements than the geometry and topology of the piping system. As will be shown in 

Section 6 the reduction in execution time can be spectacular, especially when the system 

contains relatively long pipeline sections. 

 

As there is still no such thing as a free lunch, the reduction in grid resolution is inescapably 

tied to some reduction in accuracy. The interpolation between grid levels also introduces 

some numerical artefacts such as dispersion. This is illustrated for a simple, water-filled 

pipeline system consisting of three adjacent pipeline sections with lengths of 1km, 10m and 

1m. Next comes a valve and another pipeline section with a length of 100m. The valve is 

closed in 0.5s with a classic water hammer event as a result. The pressure and flow rate 

have been computed without and with grid coarsening. When no grid coarsening is applied, 

then the space-time grid contains about 1,500 points in the spatial dimension. This number 

is reduced dramatically to about 60 when grid coarsening is enabled. Note that no model 

optimisation has been enabled to avoid that the three pipeline sections preceding the valve 

are merged into a single section. 

 

Figure 5 shows the pressure just upstream of the valve as function of time. Grid coarsening 

has almost no effect on the computed maximum and minimum pressures, even though the 



 

 

number of grid points is much lower. Grid coarsening does affect the effective speed with 

which the pressure waves travel through the system. The reason for this is that the (linear) 

interpolation algorithm (temporarily) speeds up the transmission of the wave front when it 

passes from a higher to a lower grid level. This is essentially a manifestation of numerical 

dispersion that is known to be associated with interpolation between grid points. 

 

 

Figure 5: the pressure upstream of the valve as function of time with and without 

grid coarsening. The lower graph shows a close-up view of the upper graph. 

 

Even when grid coarsening does not significantly affect the calculated pressure and flow 

rate, it can still have a noticeable impact on the calculated unbalanced forces. The reason 

is that a small change in the effective travel speed of pressure waves can have a significant 

effect on the difference in pressure at opposing elbows at the end points of long pipeline 

sections. This will be illustrated in Section 6. 

 

 

5 PARALLEL EXECUTION 

 

Instead of, or in addition to, changing the space-time grid or the MoC itself, one can also 

make use of faster hardware in order to reduce the execution time. As the sequential speed 

of processors (CPUs) is not increasing as fast as in the past, it makes sense to take 

advantage of the combined processing power offered by the increasing number of 



processor cores that make up contemporary CPUs. Indeed, any recent workstation, 

notebook and even phone comes with a couple to tens of processor cores. 

 

An alternative approach involves making use of special-purpose accelerators such as 

graphics processing units (GPUs). While their use can reduce the execution time 

significantly (6), they do have some disadvantages. To begin with, they require significant 

changes to the way that the MoC is implemented in order to fully exploit the hardware. 

While this might not be too problematic as far as the MoC itself is concerned, the impact 

will be greater on models of equipment such as check valves, surge vessels and pumps. 

Another disadvantage is that the use of accelerators typically involves proprietary 

programming languages and tools with more or less vendor lock-in effects. 

 

The present research focuses on the use of multiple processor cores in parallel to speed up 

the MoC. This involves distributing the computations and the data over the cores, and 

coordinating their execution. How this is done depends to a large extend on the parallel 

programming model that is used. When using the message passing programming model, 

for instance, the data structures need to be divided into multiple chunks that are assigned 

to different processor cores. Messages must be exchanged between processor cores to 

handle dependencies between computations. While this is certainly a viable approach, it 

makes the implementation of the code quite a bit more complex. 

 

An alternative approach, and the one adopted here, is to make use of the shared memory 

programming model. In this case the data structures do not need to be divided as all 

processor cores can access those data structures concurrently. Dependencies between 

computations are handled by means of synchronisation constructs that coordinate the 

execution of the processor cores and that prevent multiple cores from writing to the same 

memory location at the same time. 

 

Outline of the implementation 

The parallel implementation of the MoC assumes that the program is executed by multiple, 

concurrent threads (1), each one running on a different processor core, and each one 

processing a different chunk of the space-time grid. The initial thread, or main thread, 

coordinates the execution of the other threads and makes sure that dependencies between 

computations are met. The main thread also handles operations that are to be executed 

sequentially. This approach has the advantage that it does not require complicated and 

error-prone locking mechanisms for avoiding data race conditions. 

 

When the program starts it is executed only by the main thread, just like a sequential 

implementation of the MoC. The main thread sets up the main data structure, including the 

current and next arrays that store the pressure and flow rate associated with the current and 

next time step, respectively. The main thread then divides the space-time grid into non-

overlapping virtual domains that indicate which grid points are to be processed by which 

thread. It also creates a synchronisation data structure, referred to as the thread arena, that 

is used to coordinate the execution of the other threads; more about this later. After all this, 

the main thread spawns the other threads, passing each of them a virtual domain, a pointer 

to the main data structure, and a pointer to the shared thread arena. The other threads then 

wait for the main thread to indicate how to proceed. 

 

The main thread starts the execution of the MoC that proceeds in parallel as follows. First, 

the main thread signals the other threads that they should calculate the flow rate and 

pressure at the grid points within their domain and at the next time step. The main thread 

performs the same operation concurrently with the other threads. Because the domains do 



 

 

not overlap, there is no danger that different threads write to the same memory location; 

see Figure 6. The threads do need to read the pressure and flow rate associated with the 

domains of other threads, but this can be done in a safe way. All threads, including the 

main thread, then wait until the last thread has completed the operation. When that is the 

case, the main thread advances the time step number and signals the other threads that they 

should copy the data from the next arrays to the current arrays. Again, this can be done 

safely because the domains do not overlap. These two operations – calculate the next data 

and then update the current data – are repeated until the final time step has been reached. 

 

 

Figure 6: schematic representation of the parallel update procedure. The threads 

T1, T2 and T3 concurrently read from the current array and write to the next array. 

 

The above algorithm works only for the bare-bones MoC applied to a single string of 

pipeline sections. However, it can be extended in a straightforward way to include (tee) 

junctions and special, non-pipe elements like pumps and check valves. This involves 

extending the virtual domains with non-overlapping ranges of junctions and lists of special 

elements. Each time step then proceeds as follows: calculate the pressure and flow rate at 

the grid points and at the next time step; update the pressure, flow rate and MoC parameters 

at the (tee) junctions; update the state variables associated with the non-pipe elements; and 

copy the next data to the current data. Each operation starts with the main thread signalling 

the other threads and ends with all threads waiting until the operation has been finished. In 

other words, the operations are executed concurrently and in lock step with each other. 

This approach avoids data race conditions and makes sure that dependencies between 

computations are met. It does this without explicitly locking shared memory locations in 

the core code that implements the MoC. 

 

Implementation of the thread arena 

The thread synchronisation mechanism, referred to as the thread arena, essentially 

functions as a barrier construct that blocks the threads until they have all finished a 

particular operation. Its implementation largely determines the performance of the 

proposed parallel execution method because the execution of the threads must be 

synchronised multiple times per time step and because a transient flow simulation may 

require hundreds of thousands of time steps. This means that the thread synchronisation 

overhead must be very small in order to achieve an execution time in the order of minutes. 

 

The first attempt to implement an efficient thread arena failed miserably. This 

implementation involved a shared data structure containing an integer together with a 

standard mutex and condition variable. The integer was used by the main thread to indicate 

what kind of operation was to be executed next, while the mutex and condition variable 



were used to implement a barrier construct. This approach turned out to be much too 

inefficient because of memory contention, and system call and thread scheduling overhead. 

 

The second, and final, attempt adopted a busy-wait construct with local-only spinning, very 

similar to the algorithm underlying the MCS Lock construct (5,4). This implementation 

proved to be much more efficient because it avoids memory contention and does away 

with the system call and scheduling overhead. In this implementation of the thread arena 

each thread has its own small data structure containing an integer that signals the next 

operation to be executed. These structures are organised in a linked list that is traversed by 

the main thread each time that the next operation is to be executed; see Figure 7. The linked 

list is composed and broken down with a lockless algorithm that is based on atomic 

compare-and-swap and atomic swap operations. The structures that form the list are pre 

allocated to avoid memory allocation overhead during the execution of the MoC. 

 

 

Figure 7: schematic representation of the thread arena. The main thread signals the 

other threads by writing to the what variables that are monitored in a busy-wait 

loop by the other threads. 

 

Although the second implementation of the thread arena is much more efficient than the 

first one, it still involves some thread synchronisation overhead. This means that a 

significant reduction in execution time can be obtained only when the space-time grid 

contains a substantial number of grid points in the spatial dimension. This is shown in the 

next section. 

 

 

6 EFFECTIVENESS ASSESSMENT 

 

The three optimisation methods presented here – grid/model optimisation, grid coarsening 

and parallel execution – have been implemented in a commercial surge analysis 

application. They have consequently been used in numerous transient flow analyses 

involving a wide range of models of existing piping systems. Three of those models have 

been selected to show how the optimisation methods affect the execution time of the MoC. 

These models represent an LPG loading system (Model A), a firewater system (Model B) 

and a water distribution network (Model C). Their most relevant properties are listed in 

Table 1. Note that Model A (the LPG system) involves a discrete cavitation model (11) for 

simulating the formation and collapse of vapour cavities. 

 

Table 1: summary of the relevant properties of the three piping models. 

 Model A Model B Model C 

Pipeline sections 1008 2048 718 



 

 

Total length 3.1km 18km 99km 

Shortest section 42mm 0.10m 0.25m 

Longest section 10.1m 1.2km 17km 

 

Model A contains a few very short pipeline sections that represent the flanges connecting 

adjacent pipes. Although this level of detail is not needed in a flow analysis, the same 

model has been used to perform a mechanical analysis involving the unbalanced forces 

resulting from the transient flow analysis. Models B and C also contain some short pipeline 

sections because of the way that they incorporate some details of the actual piping systems. 

 

The execution times shown in the remainder of this section have been obtained with an 

optimised implementation of the MoC in C++ that uses raw, restricted pointers to help the 

compiler generate efficient machine code. This code has been executed on a workstation 

sporting two Intel Xeon X5670 CPUs with a total of twelve processor cores. 

 

Model optimisation and grid coarsening 

Table 2 shows how model optimisation and grid coarsening affect the execution time for 

each of the three models. The first row lists the execution times that are obtained when 

using only the basic grid optimisation method described in Section 3. In order to keep the 

execution times somewhat reasonable, the effective pipe section lengths and wave speed 

(as represented by the grid) are allowed to deviate 1% and 10%, respectively, from their 

specified values. The second row lists the execution times when using the model 

optimisation method that aggregates adjacent pipe sections into larger sections. The third 

and final row lists the execution times when using both grid/model optimisation and grid 

coarsening. 

 

Table 2: the execution time (in seconds) of the MoC when different optimisation 

methods are applied. 

 Model A Model B Model C 

Grid optimisation 2,680 21,600 784 

Model optimisation 572 4,860 305 

Grid coarsening 66.7 75.5 342 

 

Model optimisation lowers the execution time substantially, especially for Models A and 

B because of the (very) short pipeline sections that are present in those models. When these 

sections are merged into longer sections, they have a much lesser impact on the resolution 

of the space-time grid. This effect is less pronounced for Model C as that model contains 

much less details than the other two. 

 

Grid coarsening further lowers the execution time significantly, except for Model C. The 

reason is that a maximum time step size must be imposed on Model C in order to obtain 

sufficiently accurate results. This time step size is approximately equal to the time step size 

that is used when only model optimisation is applied. Hence, there is no scope anymore to 

increase the time step size by means of grid coarsening. Somewhat surprisingly, perhaps, 

the execution time for Model C increases when grid coarsening is applied. This has to do 

with the way that a user-imposed time step size is taken into account. Rather than reducing 

the maximum grid level, the base time step size is reduced so that a smaller imposed time 

step size results in a finer grid for all pipeline sections and not only the sections with the 

highest grid level. 

 



Grid coarsening has a noticeable effect on the unbalanced forces that are calculated with 

Model B. These forces occur because the closure of multiple check valves leads to pressure 

waves repeatedly traversing the system. The dispersion introduced by grid coarsening 

slightly modifies the effective speed with which those waves travel through the system 

(see Figure 5). Although this effect is small when looking at the pressure or flow rate, it 

can become significant when looking at the difference in pressure at two opposing elbows. 

 

 

Figure 8: the unbalanced force (upper graph) acting on a pipeline section in Model 

B as function of time with and without grid coarsening. The lower graph shows the 

pressure at one of the end points of the pipeline section. 

 

Table 3: the execution time (in seconds) of the MoC when an increasing number of 

processor cores is used. 

Number of cores Model A Model B Model C 

1 66.7 75.5 342 

2 53.4 71.0 329 

4 34.2 48.7 223 

6 32.3 43.1 195 

 



 

 

The upper graph in Figure 8 shows the unbalanced force acting on a relatively long pipeline 

section with and without grid coarsening. The results are similar to begin with, but later 

they deviate by more than 20%. When looking at the pressure at one of the end points of 

the section (the lower graph), however, the results deviate much less. Fortunately, the 

unbalanced force is not a quantity of great interest in this case as the firewater system 

represented by Model B is mostly buried. 

 

Parallel execution 

Table 3 shows how the use of multiple processor cores affects the execution time of the 

MoC when both model optimisation and grid coarsening are applied. Compared to the 

gains obtained with those two optimisation methods the results are underwhelming. 

Indeed, the execution time is reduced at most a factor two when using six processing cores. 

There are various reasons for this, two important of which have to do with grid coarsening. 

First, grid coarsening leads to a large reduction in the number of grid points so that the 

thread synchronisation overhead becomes significant. Second, the threads need to 

synchronise their execution at every base time step though a large fraction of the work is 

associated with higher grid levels. 

 

Table 4 shows the parallel execution time of the MoC when only model optimisation is 

applied. In this case the use of multiple processor cores results in a greater reduction in the 

execution time. However, the results are still not ideal because of thread synchronisation 

overhead and insufficient memory bandwidth. The overhead plays a significant role with 

Model A because this model contains an order of magnitude less grid points (17,000) in 

the spatial dimension than Models B and C. The synchronisation overhead is less relevant 

for these latter two models, but here the total memory bandwidth of the workstation is 

insufficient to sustain more than a few cores. This becomes apparent when multiple, 

independent, single-core transient simulations with Model C are executed concurrently. 

The execution time then remains about 305s with two concurrent simulations, and then 

starts to climb to 551s with four, and 865s with six simulations. As these simulations are 

completely independent, their execution time is only limited by the memory bandwidth; 

synchronisation overhead plays no role. 

 

Table 4: the parallel execution time (in seconds) of the MoC without grid 

coarsening. 

Number of cores Model A Model B Model C 

1 572 4,860 305 

2 426 2,399 163 

4 279 1,964 127 

6 211 1,906 127 

 

 

7 CONCLUSIONS 

 

The three optimisation methods presented here – grid/model optimisation, grid coarsening 

and parallel execution – can overcome the limitation that is imposed on the space-time grid 

by the Method of Characteristics (MoC). Consequently, they can reduce the execution time 

of the MoC significantly. The first two methods can have a very large impact, especially 

when the piping model combines a high level of detail with long pipeline sections. Indeed, 

the execution time associated with two such models has been shown to be reduced two 

orders of magnitude when model optimisation and grid coarsening are applied. When the 



model contains less details the two methods still help, but the reduction in execution time 

tends to be less spectacular. 

 

Model optimisation and grid coarsening affect the accuracy of the results. However, 

because they can lower the execution time significantly, it becomes feasible to check the 

accuracy automatically by running a second transient analysis with a smaller time step size 

and by comparing the results obtained with both analyses. 

 

Parallel execution on multiple processor cores can certainly reduce the execution time of 

the MoC, but the gain is less spectacular, in general, when compared to the gain obtained 

with the first two optimisation methods. One reason is that those two methods tend to 

reduce the number of grid points to such a degree that the synchronisation overhead 

increases significantly with an increasing number of cores. Another reason is that the 

available memory bandwidth must be large enough to sustain all processor cores. This, 

unfortunately, is not always the case as has been demonstrated in the previous section. One 

possible solution would be to make better use of the memory cache associated with each 

core by updating the space-time grid in triangular-shaped chunks instead of one time step 

after another. This could not only lower the required memory bandwidth, but also the 

synchronisation overhead, and could therefore be an interesting subject of future research. 

 

 

REFERENCES 

 

(1) D.R. Butenhof. Programming with POSIX threads. Addison-Wesley 

Professional, 1997. 

(2) M.H. Chaudhry. Applied hydraulic transients. Springer, New York, third 

edition, 1993. 

(3) D.E. Goldberg and E.B. Wylie. Characteristics method using time-line 

interpolations. Journal of Hydraulic Engineering, 109(5):670–683, 1983. 

(4) T. Johnson and K. Harathi. A simple correctness proof of the MCS 

contention-free lock. Information Processing Letters, 48(5):215–220, 1993. 

(5) J.M. Mellor-Crummey and M.L. Scott. Algorithms for scalable synchronization 

on shared- memory multiprocessors. ACM Transactions on Computer Systems, 

9(1):21–65, Feb 1991. 

(6) W. Meng, Y. Cheng, J. Wu, Z. Yang, Y. Zhu, and S. Shang. GPU acceleration 

of hydraulic transient simulations of large-scale water supply systems. Applied 

Sciences, 9:91, 12 2018. 

(7) A.K. Trikha. Variable time steps for simulating transient liquid flow by 

method of characteristics. Journal of Fluids Engineering, 99(1):259–261, Mar 

1977. 

(8) J.B. Turpin. Variable step integration coupled with the method of characteristics 

solution for water-hammer analysis, a case study. Technical report, NASA 

Marshall Space Flight Center, Huntsville, AL, 2013. 

(9) G.Z. Watters. Analysis and control of unsteady flow in pipelines. An Ann Arbor 

science book. Butterworths, 1984. 

(10) David C. Wiggert and Mark J. Sundquist. Fixed-grid characteristics for 

pipeline transients. Journal of the Hydraulics Division, 103(12):1403–1416, 

1977. 

(11) E.B. Wylie, V.L. Streeter, and L. Suo. Fluid transients in systems. Prentice Hall, 

1993. 

 


