Dynaflow Research Group

  • Engineering
    • Projects
    • Mechanical
    • CFD & Surge Analysis
    • Pulsations & Vibrations
    • Fiberglass Engineering
    • Geothermal Wells
  • Software
    • BOSfluids
    • BOSpulse
    • FEPipe
    • NozzlePRO
    • FEATools
    • Jive
    • ISOtracer
    • BOSview
    • BOS B31
  • Training
  • Career
  • News
  • Contact
Skip to content

Dynaflow Research Group

Advanced Solutions in Engineering
  • Engineering
    • Projects
    • Mechanical
    • CFD & Surge Analysis
    • Pulsations & Vibrations
    • Fiberglass Engineering
    • Geothermal Wells
  • Software
    • Flow Analysis
      • BOSfluids
      • BOSpulse
    • Structural Analysis
      • FEPipe
      • NozzlePRO
      • FEATools
    • Academic
      • Jive
    • Tools
      • ISOtracer
      • BOSview
      • BOS B31
  • Training
  • Career
  • News
  • contact

Hades used in PhD Jing Hu

15 Nov 2004

Titel: Porosity of Concrete – Morphological Study of Model Concrete
By Jing Hu

This study has developed a comprehensive methodological framework for characterizing geometrical and morphological aspects of pore space in cementitious materials and explored its application to actual cement pastes and model concretes for the purpose of predicting mechanical and transport properties of cementitious materials. The evolution of pore structure during the hydration process is studied as a function of technical parameters such as cement particle size distribution, water cement (w/c) ratio and degree of hydration. This issue is approached by quantitative image analysis techniques, stereological estimation, and by mathematical morphology methods.

The research is carried out in two parallel approaches, i.e., computer simulation by the SPACE (Software Package for the Assessment of Compositional Evolution) system and experimental investigations based on quantitative image analysis of actual specimen sections. Stereological theory is used to derive three-dimensional (3D) structural information including porosity and specific surface area from two-dimensional (2D) sections, thus avoiding the extremely laborious character of serial sectioning. Spacing parameters (e.g. nearest neighboring distance, mean free spacing) in stereological theory are adopted to represent the spatial dispersion of solid phases, and thereby provide information on pore size. On the other hand, mathematical morphology measurements (e.g. covariance function, opening distribution technique) are performed on model concretes and on section images of actual cement pastes for quantitative characterization of pore structure. Mechanical and transport properties of cementitious materials can be predicted with the empirical models on the basis of the derived structural information.

A proposal is formulated in this study to refine the Katz-Thompson equation for estimating permeability of cements and concretes, by means of incorporating a new stereological parameter (the so-called 3D pore distribution density). In addition, the stochastic concept of heterogeneity is discussed on the basis of local porosity analysis of pore structure and demonstrated by a comparison study of cement pastes with different degrees of maturity.

The research outcomes provide important implications for microstructural analysis of cementitious materials and for experimental design in concrete technology. The structural evolution and properties of the interfacial transition zone (ITZ) between cement paste and aggregate, as well as the depercolation threshold of capillary porosity has been explored in view of the morphological aspects of model concretes.

For more information please contact:

DRG Software

+31 85 058 00 46

Related news

1 July 2022

DRG at the introductory course OpenFOAM for CFD analysis

READ INFO
20 May 2022

Upcoming BOSfluids release offers a steady state license option

READ INFO
12 May 2022

BOSpulse: (Preview) New support for end caps

READ INFO
  • Dynaflow Dynaflow Research Group is ISO:9001 certified.
    ISO 9001:2015
    certified
  • HEAD OFFICE

    Laan van Oversteen 20
    6th floor
    2289 CX Rijswijk
    The Netherlands

  • MIDDLE EAST OFFICE

    Bay X2 Tower, Unit 3109
    Jumeirah Lakes Towers, cluster X
    P.O. Box 73001, Dubai
    United Arab Emirates

  • CONTACT

    Phone: +31 (0)85 058 0046
    E-mail: infoaanvraag@dynaflow.com

  • © Dynaflow Research Group BV

    • Terms & Conditions
    • Privacy Policy
    • Cookie policy (EU)
    • About us
    • Contact